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i.- BACKGROUND; RLVIEW OF BASIC CONCEPTS.

This final report llustrates the results of a three-years research program on Quan-

tum Chaos.

After some ten years of investigations on the quantum dynamics of cassically

chaotic systems, the basic question whether in quantum mechanics anything survives

of the impressive manif bations of classical chaos hasn't yet been given a dear answer.

If a general indication is to be drawn from the analytical, numerical and experimental

results up to now obtained, this is that classical chaos is suppressed or at least strongly

inhibited by quantization; as a consequence, "quantum chaos" - a widespread denomi-

nation for this research area - is still sometimes considerered a questionable concept. In

spite of this negative remark, the search for quantum manifestations of classical chaos

has led to substantial advance in several areas of microphysics: semiclassical methods

Lave been substantially refined and new phenomenological aspects .f the dynamics of

small quantum systems have been identified.

1.1-Chaos in microphysics?

A major impulse to the investigations reported below was given by the analysis of some

specific models used in various areas of microphysics. From the standpoint of classical

mechanics, these models exhibit the typical feature- of nonlinear Hamiltonian systems

and under appropriate conditions they enter a chaotic regime. The question is, how is

the classical chaos mirrored in the quantum dynamics of these models?

This is a very important question for the present day physics, both from a the-

oretical and an applicative viewpoint. On theoretical grounds, it involves the nature

of the semiclassical approximation when the classical motion is chaotic, i.e, in a situa-

tion in which the boundary between quantum and classical mechanics is still vague and

undefined so many years after the birth of quantum mechanics.

On more physical grounds, the onset of classical chaos is often accompanied by
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strong instabilities that lead to experimnentally observable and often dramatic behavior.

The possibility that this sort of phenomena can be observed in miarophysics, i.e. in

the domain of validity of quantum mechaLics, opens a vaste new field to experimental

research. A widely invcz-ig--ed example (to be discussed in more detail below ), to

which the work reported here has given essential contributions, is that of a atom in

an external radiation field. This involves the study of the dynamics of an electron in

the combined Coulomb plus radiation fied, and a simple model for that is a nonlinear

oscillator subject to an external perturbation periodic n time. Such a classical model

turns out to exhibit a transition to chaos as soon as the perturbation strength reaches

a critical value. Were the atom a classical object, in such conditions it would be rapidly

ionized (chaotic ionization). The atom however is quantum, so the important question

arises: does quantum mechanics allow for any such ionization mechanism?

According to experimental and theoretical results, it does - under certain conditions

at least. Nevertheless, the modifications that quantum mechanics imposes over the

classical chaotic picture are extremely important and their investigation has opened a

new field to both theoretical and experimental analysis.

1.2-Dynamical localization

The concept of dynamical localization dominates the present-day understanding of quan-

tum chaos in periodically perturbed systems. A classical nonlinear oscillator subject to

an external perturbation periodic in time can enter a regime of chaotic motion marked

by diffusive growth of its energy. The motion of such an oscillator becomes very erratic

and looks very much like a random walk; in that case, only a statistical description

proves viable ( though the system is, in principle, perfectly deterministic and has just

a very few freedoms ). This kind of a motion is called chaotic diffusion.

Chaotic diffusion is a physically important aspet of classical chaos. Chaotic in-

stability leads to this type of response, e.g, in nonlinear systems subjected to periodic

perturbations. This type of instability is well known in classical dynamics and is often

responsible for undesirable effects in macroscopic systems.
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The stability of atoms or molecules ini external fields dearly depends on whether

this phenomenon survives at least in part at the quantum level. It turns out that

quantization has a strong effect on this diffusion. As a matter of fact, the study of a

simple albeit abstract model ( the so-called Kicked Rotator ) yielded the remarkable

result, that quantization strongly limits and even suppresses this type of diffusion. In

other words, a classical system would continue to absorb energy from the external

perturbing field, but its quantum version is much more stable and reaches after a while

a sort of steady-state in which no energy is further absorbed ( in the average).

The mechanism that produces this quantum quenching of the classical diffusive

behaviour is basically quantum interference.

In the chaotic regime, the classical oscillator wouid display a host of different orbits

that behave quite differently in spite of the closeness of their starting points ( initial con-

ditions); in the quantum case, all these wildly different dynamical possibilities interfere,

thus leading the process of excitation to a halt.

This phenomenon has been recognized to be analogous to the Anderson localization

of Solid State Physics. '

At very low temperatures, the resistance offered by a cristalline solid to the mo-

tion oi electrons is essentially due to imperfections in the crystal structure, that spoil

its perfec-. periodicity. The Anderson model is a model fo the study of the residual

resistance, in which the electron jumps from one site to another in a disordered lat-

tice - i.e., a lattice that exhibits random deviations from the perfect crystal periodicity.

Classically a random walk would be expected, but quantum mechanically it turns out

that the diffusion of the particle through the disordered lattice is stopped or at least

inhibited by interference ( depending on the spatial dimension of the lattice ). Due to

this effect, the residual conductance of a linearly shaped sample of a cristalline solid

decreases exponentially with the length of the sample. "I he rate of exponential decay

- across a given sample depends on the specific sample ; in the Anderson and related

models, the lattice imperfections are described by a random potential, so that the actual

rate of decay depends on the particular realization of that random potential. However,
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in the limit of an infinitely long sample y'turns out to be realization-independent and

its inverse -- is known as the localization; length.

Realizing that the effect of quantization on classical chaotic diffusion and the An-

derson localization are just different manifestations of su common quantum dynamical

effect was the starting point of a theory known as dynamical localization theory. At

the heart of this theory lies the assumption that this effect is a generic occurrence in

the quantum dynamics of systems that classically would display a chaotic diffusion, and

that it can be efficiently analyzed by means of the same methods used in the theory of

Anderson localization. This means that the dynamics should be analyzed on statistical

grounds. In other words, the theory should give up a complete description of all the

details of the quantum dynamics; only certain important average quantities like the

localization lengths should be taken into account.

The link of the dynamical localization effect with the Anderson localization can also

be qualitatively understood as follows. A quantum system subjected to some external

monochromatic field will perform a chainof transitions between his energy levels by

absorbing or releasing quanta of the field. If the energy of one quantum is larger than the

typical level spacing, and provided that the width of one such one-photon transition is

not too large, then , during its time evolution, the system will significantly populate only

narrow resonant zones around the levels that can be reached by absorbing or releasing

an integer number of quanta starting from the initially excited levels. The motion will

thus resemble that of a particle on a discrete lattice, each site in the lattice representing

a particular quasi-resonant level. A jump from one site to another will correspond

to absorption or release of some photons. If the levels were exactly resonant with one

another, the sites should be evenly spaced in energy by exactly one quantum and should

make up a periodic lattice, but this will not be the typical case. In general, every quasi-

resonant level will have a detuning from exact resonance; therefore all the sites in the

resonant lattice will be more or less displaced from the ideal resonant configuration and

will make ap a sort of a disordered lattice.

This picture of the dynamics of the diven quantum systems is oversimplified but
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it brings to the light the origin of dynamical localization. Indeed, provided that the

sequence of detunings can be assumed to be irregular enough, a formal identification

with models of the Anderson type is possible. In that case, no unlimited escape along the

quasi-resonant lattice is to be expected - this possibility will be ruled out by interference.

2.- STATEMENT OF PROBLEMS

Is this quantum suppression a general phenomenon?

At the core of the so-called "dynamical localization theory" lies the idea that an

inhibition of diffusive excitation due to quantum interference should be expected in

wide generality, upon quantizing a classical system in which a chaotic diffusion takes

place. This surmise, supported by extensive numerical simulations and by some heuristic

arguments, led to the physically important prediction, that the quantum suppression of

classical chaos should be observed also in the case of a H-atom in a microwave field.2 '3

This evould result in significantly smaller ionization rates than classically expected. ThIc

problems we addressed in our investigations were therefore

(i) under what conditions - if any - can the localization effect be observed in the dynanics

of real hydrogen atoms in microwave fields; being aimed at dectecting the effect in

laboratory experiments, this part of our program involved a careful numerical simulation

of the actually realizable experimental conditions;

(ii) how can the localization effect be circumvented, giving rise to a mechanism of fast

unbounded excitation eventually leading to ionization,

(iii) how far the similarity between the dynamical localization and the Anderson local-

ization can be pushed, and to what extent,can already known theoretical results about

the latter be used to describe the dynaiinics of classically chaotic systems such as atoms

or molecules in radiation fields.
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3.-THE HYDROGEN ATOM IN A MICROWAVE FIELD

The problem of microwave ionization of hydrogen atoms has played an extremely im-

portant role in the development of "quahtum chaology", because it offers a unique

opportunity for experimentally investigating the relevance of classical chaos in quantum

mechanics. The behavior of the atom in the microwave field can be theoretically and nu-

merically analyzed on a very simple model of a periodically driven nonlinear oscillator.

In the classical mcdel the onset of chaos pfovides a very efficient ionization mechanism:

for any initial state of the atom there is a critical field strength above which the clas-

sical trajectories become chaotic and the atom starts absorbing energy in a diffusive

way. This diffusive excitation eventually leads to ionization. The theory of dynamical

localization has been applied to the problem of a hydrogen atom in a microwave field

and has led to an interesting prediction, that has been successfully checked in labora-

tory experiments, as explained below.2,' , 4 Though in some appropriate frequency range

the process of ionization of the atom is just as strong as the classical chaotic picture

would predict, at higher frequency quant~m interference comes into play and inhibits

the ionization process.

3.1.- The 1-d model for microwave excitation

The most widely studied model for the behaviour of H-atoms in microwave fields is that

of an electron moving on the half line z > 0 (parallel to the direction of the clectric

field). The Hamiltonian ( in atomic units ) is:
H=p2  1

H = E- +ecz os't (1)
2 z

and is supplemented witb a condition of elastic reflection at z = 0. In principle, the Id

model is justified only for special choices of the initial states ( extremal Stark levels ),

but numerical simulations of the model have given surprisingly good data for the onset

of ionization in 3d experiments'. An equijalent Ilamiltonian in a different gauge is

HI( --W 1 sinWi)-- 1  (2)
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The unperturbed classical dynamics (e 0) possesses a bound-state region in phase

space, and the border of this region is a separatrix (trajectory of zero energy). Inside

the bound-state region, action-angle variables (n, 0) can be introduced. The frequency

11 of the unperturbed motion depends on the action n according to f0(n) = n-s and

approaches 0 on the separatrix.

The application of the resonance overlap criterion shows that for any nonzero field

strength c a stochastic layer exists close to the separatrix. Inside this layer the orbits

are chaotic and diffuse until they ionize. The thickness of the layer depends on e and w.

The condition for strong ionization starting from a given bound state is just that the

stochastic layer extends so far downwards as to include the given state. Given w and

the initial action n, the critical field strength reqired for that can be estimated an,'

defines the classical chaotic threshold

3.2-The Kepler Map

Following a well known method in the theory of dynamical systems, the continuous

time dynamics ruled by the Hamiltonian (1,2) can be analyzed by means of appropriate

Poincare' sections, that are introduced as follows. First, the time-dependent, 1-freedom

problem is transformed into a time independent, 2-freedoms problem by introducing a

new couple of conjugate variables N, 4, with 4, = wt ( the phase of the field ). The

appropriate Hamiltonian is then

li(p,z, N, ) -(p -(-1 sin0)2 _ +wN (3)
2

The motion develops on a 3d hypersurface 7J = const. = At. From (3) it is seen that

wN = \ - E where B is the unperturbed energy. The 2d variety 0' defined by p = 0 can

now be used to construct a Poincare' map. An orbit leaving from a point P of o will

in general cross again a; the first such intersection P' is taken as the image of P under

the map. Since N,O can be used as canor.ical coordinates on a, the map will specify

the changes of N,O4 between subsequent crossings of the variety a. If ew - < 1, these

crossings occur when i is close to 0, i.e., wher' the electron is close to the aphelion.
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Therefore, roughly speaking the map yields the change in energy between subsequent

passages at the aphelion, i.e. it corresponds to a stroboscopic observation of the orbit

at intervals of time approximately equal to the (variable) orbital period.

An approximate explicit expression of the map can be easily found' ,7 . This ex-

pression is especially simple if the field frequency is much larger than the unperturbed

Kepler frequency ( i.e., if wn s 
> 1 ) *:

N N + k sinO
0 1 (4)

S+ 21rw[2(,N - A)]-
3, 2

Here k = 0.8221rew-'. The above map is defined only if 0N - A > 0, i.e., only for

negative energies. The iteration of the map must be stopped when the energy becomes

positive, because then the orbit has ionized. Moreover, the map (4) is the result of a

perturbative calculation and is valid only for not too large k (see ref.3).

Upon linearizing the 2nd eq.(4) around some value of N, corresponding to a value

E0 = -(2no) - of the energy, and dropping an unessential constant, one obtains the

Standard Map:
N =N+ ksin4'

(5)

where T = 67rw 2n'. This is a very important result: for scaled frequency wn 3 > 1,

the classical excitation process is locally described by the Standard Map. The resulting

picture of chaotic excitation is as follows; the electron mcves almost undisturbed along

its unperturbed orbit - apart from small field-induced oscillations around it, that do

not change its average energy - until it comes close to the nucleus. There it receives a

"kick" described by the Standard Map. Above the chaotic threshold, these kicks come

at random, and the electron performs a kind of a random walk in energy, until it ionizes.

3.3- The Quantum Kepler Map.-

The quantization of the Floquet Hamiltonian (3) is readily accomplished by the standard

rule N - -z 0. Once quantized, the variable N will take only integer values; recalling

* In the present form of the map, the phase 0 is taken at the perihelion
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that -wN coincides with the unperturbed energy, apart from an additive constant, one

is naturally led to identify N with the number of photons.

In the same vein, one can undertake a formal quantization of the Kepler Map (4)

and investigate the nature of the discrete-time dynamics defined by the Quantum Kepler

Map obtained in this way'. One finds that the Quantum Kepler Map is given by an

operator acting on state vectors 05(qb) according to:
!

T -) esHfOPC kCO800(o)

where I

A, = 27r [_2W(No + AT)] -1/2

the operator P is the projector on bound states N < -No = no/2wo. This quantum

dynamics can be formally described as a motion on a discrete lattice where the sites are

labelled by the integer values of N. This has the following physical meaning. Starting

from some initial hydrogenic bound state, and by absorbing or releasing photons, tile

atom will jump from one state to another in a ladder of 'quasi resonant' bound states

("photonic" states). These states correspond to the sites in the lattice, and the electron

can jump from one site to another by absorbing or emitting some photons.

Since the classical map describes the motion only in the bound state region, from

which the electron may leave when ionization occurs, tlee quantum map can account

only for the absorption of a maximum number of photons, given by the number of

photons required to ionize: N1 = (2n2w) - . In other words, the quantum map defines

the dynamics on a finite lattice. The quantum map also includes a dissipation which

describes direct ionization: this is active only on a few photonic states close to the

1-photon ionization border.

As can be guessed from the similarity of the classical Kepler map to the Standard

Map (5), the Quantum Kepler Map is closely related to tile Quantum Kicked Rotator,

that will be presently quickly reviewed.
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3.5 -Localization in the Quantum Kicked Rotator

The quantum kicked rotator is obtained by quantizing the Standard Map (5). Its motion

can be formally described as a quantum motion on the discrete, infinite lattice defined

by the integer values of N ( that has now the meaning of angular momentum ). This

motion is always localized: a wave packet initially concentrated at some site N0 will

start spreading on the lattice, but after a while it will "freeze" into an average steady-

state configuration. The corresponding probability distribution over the sites will be

fluctuating around an average distribution:

(N) 1 f+ 21N No] exp [21NN1l (6)

where ! is the localization length. In the semiclassical regime, and in the region of strong

classical chaos, one has the remarkable estimate I 1 k2.

The above estimate comes from a very general argument that can be summarized as

follows". Let us consider a periodically perturbed quantum system which has a chaotic

classical limit. Given the states 0(k) of the system after k = 1,2,...,N periods of the

perturbation, we can investigate the quasi-energy spectrum by performing a discrete-

tinie Fourier analysis of ther string ck = (t,(0)14'(k)) where (.1.) is the scalar product.

Given ck up to k = N, we can resolve the spectrum on a scale - -. On the other

hand we can expect the number of frequencies significantly contributing in the motion

up to time N to be on the same order as ihe number of unperturbed levels excited up

to the same time; this number is roughly An : (DN) 1 with D the classical diffusion

coefficient. Therefore, on the scale 1/N the quasi energy spectrum will be resolved by

just (DN) 2 values. This means that for sufficiently large N gaps will appear in the

spectrum, roughly for N z (DN)1, i.e., for N :z D. For such N recurrences should be

expected to appear and to slow down the excitation. The spread An of the wave packet

at the same time N will be on the order of hie maximum spread attainable by the wave

packet in the course of its evolution; since the latter is just given by the localization

length, we get I D k/2 where the lattter estimate is well known and comes from

estimating the classical diffusion coefficien. under a random phase assumption that is

very well justified in the case of strong classical chaos.
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3.5 -Localization in the H-atom

The dynamical localization theory for the Hydrogen atom in a microwave field is basi-

cally an extrapolation to that problem of the results obtained for the quantum rotator

( QKR ), a bridge being provided by the Quantum Kepler Map ( QKM ). This extrap-

olation rests on some assumptions:

- that the QKM is in some sense an approximation for the real Schrodinger equation.

This is by no means obvious: the connection between the discrete time defined by the

number of iterations of the Map and the real time is quantum- mechanically lost as

soon as the wave packet spreads over states which have significantly different classical

orbital periods.

- that the similarity in structure between the QKR and the QKM justifies the application

to the QKM of known results about the QKIL The essential difference between the

QKM and the QKR is that the former lives in a finite lattice, and that this lattice

has a 'leaky end' due to direct ionization from photonic states close to the ionization

border. Nevertheless, as long as the wave packet does not significantly populate these

border states, the dissipation can be neglected and the QKM and QKR dynamics will

be similar - in their gross features at least. This will certainly be the case if I < Ar,

because the wave packet will "freeze" before having a chance to significantly populate

the border sites. Since as explained above I k2/2 for the KR and the "kick strength"

of the Kepler Map is k = 0.0822-r 1- s / s , one should expect the localization length in

the number of photons to be given by

I = 3.33 f,2 - 1
/Z

which is well confirmed not only by the numerical simulation of the quantum Kepler

Map but even by the numerical solution of the Schrodinger equation (Figs.l), thus fully

supporting the validity of the Kepler Map approach also for the quantum problem.

Given this explicit formula for 1, the condition for localization I < NI takes the form:

7/6

< = (6.6no)/ 2  
(7)

12



There is a wide range of parameterswhere this condition can be satisfied while

keeping the field strength well abore the dassical chaos border. In this region, a phe-

nomenon of dynamical localization quite similar to the one observed in the QKR will

prevent the atom from ionizing so fast as if should dassically. The "frozene distribution

will have the form (6) with N the number of absorbed photons.

3.5-Delocalization

If I is increased ( e.g., by increasing the field strength ) while keeping N1 constant, the

above picture will lose its validity. Qualitatively one can expect the ionization rate to

increase due to the onset of a diffusive excitation more or less like the classical one.

Conditions for this are that I > N and that at the same time k < N ( implying that

a large number of kicks are needed to ionize).

3.8- Numerical Checks

The localization phenomenon for the H-atom in a microwave field has been confirmed

by extensive numerical simulations of the time-dependeut Schrodinger equation since

19842. In addition to that the Kepler map yields an indication of great heuristic value,

namely that the shape of the localized distribution should be exponential in the num-

ber of absorbed photons ( formula (6) ). This has also been confirmed by numerical

computations'. In fig 1 an example is shown of localized distributions obtained from

the numerical integration of the Schrodinger equation. The distribution over the un-

perturbed hydrogenic states (labelled by the quantum number n), , suitably averaged

in time, is plotted ( in logarithmic scale ) versus the number of absorbed photons

N = (2n 2)- l - (2n2) - ' where no = 100,200 is the quantum number of the initially

excited state. Here wn' = 3.5 .The expor.ential character of the distribution is fairly

evident, as well as the role of the quasi resonant 'photonic' states.
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3.9- Beyond the Id Model

Although the above theory waS developed for the 1-dimensional mod-, its predictions

turn out to be valid even for more realistic situations. As we already mentioned, the

experimentally observed ionization thresholds could be satisfactorily reproduced by nu-

merical simulation of Id classical models; on qualitative grounds, it was held that almost

one dimensional orbits, i.e. orbits very elongated in the field direction could be more

easily ionized so that they would give a dominant contribution to the ionization rate in

the threshold region.

We have investigated a two-dimensional model in which the magnetic quantum

number with respect to the field direction is 0. We were able to find a Kepler Map

that approximately describes the changes of the canonical variables .A,£, L, , between

subsequent passages at the aphelion; £ is angular momentum, and , its conjugated

phase. Although this map is quite complicated' , an approximated analysis shows that

the evolution of elongated orbits is essentially one-dimensional - i.e., it develops as

predicted by the ld model - due to the existence of an approximate integral of motion.

Over not too long times ( on the order of the experimental interac.,on times ) the

two degrees of freedom behave as if they were uncoupled. This theoretical argument in

support of the validity of the Id model even in 2d situations was confirmed by numerical

simulations of a quantum 2d atom, that yielded evidence of an exponential localization

in the number of photons quantitatively similar to the one occurring in the Id model

(Fig.2).

3.8-Experimental Verifications.-

Experimental results on microwave ionization of highly excited Hydrogen atoms in the

region wn30 > 1 were reported for the first time in 1988 by Galvez et a. Until then, n.-

merical computations and experiments in ,he region wn0 < 1 had shown that classical

mechaics accounts very well for most of l',e experimental results. The 1988 exper-

imental data clearly show that in the high-frequency region the quantum ionization

thresholds rise above the classical ones. These data provide experimental evidence for
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thequantum suppression phenomenon. This was confirmed by new experiments by an-

other experimental group in, 1989; in this case, the experimental results were also found

to agree with some quantitative predictions of localization theory10 .

A typical microwave ionization experiment produces "ionization curves' like those

shown in Fig.3, which displays some of the experimental data by Galvez et aL For given

w and no the field strength is increased until 10percent ionization is achieved. The

corresponding value of the 'scaled field' co = a' is plotted versus the 'scaled frequency'

wo = cwi ; the latter is varied by changinj no . The data in Fig.3 were obtained with

w = 36.02 GHz. Fig.3 shows that for wo > 2 the 10percent experimental thresholds

circles ) lie systematically above the ( numerically computed ) classical thresholds ( the

crosses in Fig.3 ).

A crucial remark is that the experimentally measured ionization does not only include

those electrons that have escaped into the continuum, but also those excited above

some cutoff level nc ( for a detailed discussion see ref.5). Thanks to this fact, the

localization theory can sometimes produce a quantitative estim ate for the thresholds.

This is the case when only a small part of the total probability flows into continuum

in the given interaction time. In that case, (i) the 'ionization probability' P will be

essentially given by the total probability on the bound states above the cutoff nc, and

(ii) the final distribution over the photonic states will be of the form (6). Therefore, P

can be computed from the distribution (6). In principle, this procedure can be reversed

in order to find what the field strength must be, in order that P = 0.1. This yields

a simple formula " which corresponds to the smooth line in Fig.3. More precisely, if

we define the ionization probability as the total probability above a fixed level i, the

threshold for 10% ionization is obtained from the condition

0.01 = f(N)dN

with N = (no 2 
-

2
)/2w. The rhs of the last eqn. can be computed as a function of

c by using eqn(6), and the resulting equat, )n can be solved for c.

However, in order that this procedure be a self-consistent one, tile field strength

and the localization length found in this way must not be so large as to significantly
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populate the fast-ionizing states close to the ionization border; otherwise, the dissipation

cannot be assumed to be small. In such a case the 'localization formula', which does

not account for continuum, cannot be used - it would be found to overestimate the

actual thresholds. For instance, this will happen if the cutoff n, is pushed very far from

the initially excited state - it will not be possible in that case to transfer a 10percent

probability on the bound states beyond the cutoff, without populating the border states.

One such case that lies beyond the limits of applicability of the localization formula was

reported in refs 5,9.

A further confirmation of the localization effect was provided by experimental work

of J.Bayfield and D.W.Sokoll ° . This work was especially designed in order to check the

predictions of localization theory and was carried out in close parallel with numerical

simulatons of the experimental setup. Wheras in the case of Galvez et al. atoms

were prepared in a microcanonical distribution of states with a given principal quantum

number, in Bayfield's case the magnetic quantum number along the direction of the

field could be assumed to be zero; the situiation here was therefore "two-dimensional"

as compared to the "three-dimensional" situation of Galvez et al. Another point of

difference was that the microwave interaction took place inside a wave guide ( Galvez et

al had a microwave cavity instead ) where atoms were exposed to a microwave pulse of

frequency varying in a band 12.4 to 18 GHz, with a nominal envelope sin(t/7.5nsec).

Finally, a static field 0.87 Volt/cm was superimposed to the microwave field; this field

would have produced static-field ionization of states with principal quantum number

164, considerably higher than the adjustable cutoff level R used to empirically define

ionization.

Figure (4) shows thresholds for 10% ionizations obtained experimentally, by quan-

tun numerical simulations on the Id model, and by the above sketched theoretical

formula. ( solid line ). To be emphasized is that the theory does not describe either

quantumn or classical resonance effects, as it is based upon only the smoothed behaviour

of stationary state distributions in quantumn number.
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4.- HIGHER DIMENSIONAL LOCALIZATION

How can the lot,.szation effect be circumvented? In the theory of Anderson localization

in disordered solids this question admits 'of a variety of different answers, depending

on the spatial dimension of the solid themselves. In the one dimensional case, i.e. for

a solid shaped like a bar or a wire, the localization becomes ineffective as soon as the

localization length becomes larger than the length of the solid. The delocalization in

the H-atom problem has the same origin: here the length of the "solid" is defined by the

number of photons that will carry the electron into the continuum ( see the discussion

in Sec.l.2) , and the condition that this length be smaller than the localization length

is just eqn.(7). For two- and three-dimensional solids, besides this obvious finite-sample

effect, other mechanisms exist that make the the effect of Anderson localization milder.

It is a natural question whether these higher-dimensional localization effects have a

dynamical counterpart, too.

As summarized above, the dynamics of a quantum system subjected to a perturba-

tion periodic in time is formally "conjugate" to a one-dimensional localization problem.

It turns out that higher dimensional locaiization problems have a dynamical counter-

part in the dynamics of systems subjectedto a number of incommensurate frequencies.

Notice that the Kicked Rotator is subject to infinitely many frequencies commensurate

frequencies given by the integer multiples of the kick frequency and that the hydrogen

atom is subject to a monochromatic field. It is known[4] that the addition of a second

incommensurate frequency in the kicked-rotator model does not destroy the localization

effect; nevertheless, the localization lengths are sharply increased in comparison to the

one frequency case, in a way that somehow reproduces known results from the thory of

2-d disordered solids ("films").

The most interesting case is the one wvith three incommensurate frequencies. As

we shall presently explain, this corresponds to a three dimensional localization prob-

lem. According to the theory of Anderson localization a transition from localized to

extended states should be expected as the coupling strength is varied. The reason why
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investigating the possibility of a similar transition in a dynamical model is important is

twofold. First, one needs to ascertain whether the localization effects that prevents dif-

fusive excitation can be circumventerd, so that in some cases at least quantum systems

can prove as unstable as their classical counterparts are. Second, the precise details

of the Anderson transition are not yet completely understood; the theoretical analysis

is complicated and the numerical simulation prohibitive. In contrast, the numerical

analysis of dynamical models is much lesi expensive; as a matter of fact, in this way

we were able to obtain some interesting indications at a relatively low computational

cost
1 2

.

4.1- Anderson Transition in a Dynamical Model

We studied the motion of a particle on a circle, described by the time-dependent Hamil-

tonian:
+00

H= o + V(O,t) (t -S) (8)

The 2nd term describes kicks occurring periodically in time with period one. The free

evolution between kicks is given by the Hamiltonian H0 :

Ho-) = E.j), I-) = (27r)i/exp(inO)

We assume the eigenvalues E. to be random numbers uniformly distributed in (0, 21r).

We also assume V to explicitly depend on time according to

V = V(0,0 1 +wlt,0 2 +W 2t)

with V a periodic function of its three arguments to be specified later, and 01,2 arbitrarily

prescribed phases. Since we would like w1,2 to be incommensurate with each other

and also with the frequency of the kicks, we take w1 
= 21rA- 1 and w2 = 27rA-2 with

A = 1.3247... the real root of the cubic equation x' - z - ' = 0. With such a choice,

wl,2 are a 'most incommensurate" pair of umnbers. The evolution of the system from

just after one kick to just after the next is given by ( we take here h = 1):

4(0,t + 1)= e-'0 '°' t+1 ~e'H'(0,t) (9)
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Expressed in this form, the rotator dynamics is very easily simulated because the time

dependence of V is explicitly known.

We shall now elucidate how is this model connected with a 3d tight-binding model

of the Anderson type. First of all we consider the phases 01,2 as new dyna'ical variables,

with conjugate momenta n 1,2 . Then we consider the Hamiltonian

+00H' = H0(f) +.',fl1 +w f, + V(0,0,,0 2) ( - ) (10)

with il, 2 = -i/801,2 . The last hamiltonian describes a rotator with three freedoms

0,01,02 subjected to periodic kicks, the strength of which is no more time dependent.

The one-period propagator for this rotator is now

e(11)

In order to recognize that the 3d quantum model defined by (10) and the Id model

defined by (8) are substantially equivalent, it suffices to rewrite the Schrodinger equation

for the 3d model,

i-4¢(0,01,,0,,i) = H'4(0,01,02, )

in the interaction representation defined by

¢'(0,01,02,t) = e-1A1+ 2ft ) TO , 01, 02, 0

In this way, one immediately recovers the Schrodinger equation with Hamiltonian (8)

for the wave function T.

We can now apply to the 3-rotator (10) a well-known transformation' that will

map it onto a 3d tight-binding model. Thanks to this transformation, the problem

of determining the quasi-energy eigenvalues and eigenvectors of the 3-rotator will be

turned into the problem of solving the equation:

T n u,, + F Wrun+r = fun (12)
r?6O

where n = (n,ni,n2) and r label sites in a 3d lattice,

T = -tan O.5(E. 4- n1w1 + n2 W2 + A)]
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Here A is quasi-energy, W are the coefficients of a threefold Fourier expansion of

ian[O.5V(0, 01,02) and C = -W. We now choose

V(O,01,0 2 ) = -2arctan2k(cosO + cosOz + cos0 2 )

and eqn.(12) becomes

Tnu. + k Ur = 0

where the sum includes only nearest neighbours to n.

After all these formal manipulations, the original rotator problem has been turned

into a tight-binding model of the Anderson type; the nature of the eigenstates of the

latter will determine the nature of the dynamics of the rotator, that will be localized or

delocalized ( in the sense of unbounded excitation taking place ) according to whether

these eigenfunctions are localized or extended. The disorder in the model (12) is given

by the pseudorandom character of the potential Tn.

The model was investigated by numerically simulating the dynamics of the rotator,

starting with the same initial state and with increasing values of the coupling constant

k. A transition between two types of motion was detected around a value kc, - 0.47,

the dynamics being localized for k < k,, and delocalized for k > kc,. In the former case

the (time-averaged) steady-state distributions were found to be exponential (Fig.5) and

the corresponding localization lengths could be determined. In the latter, unbounded

diffusive excitation occurs, with Gaussian-like distribution uf width linearly increasing

with time (Fig.6) , so that the diffusion coefficients could be determined. A remarkable

result was obtained from the analysis of the behaviour of the inverse localization length

- and of the diffusion coefficient close to the transition point (Fig.7): we found that

D - const.Ik - k,,I, -y - const.( k - k ,1'

with s - 1.25 and v - 1.5, which are close to values theoretically obtained in localization

theory from diagrammatic computations. '

This result of ours enforces a striking similarity between the dynamics of quantum

systems under almost periodic perturbations and tight-binding models with spatial d

mension given by the number of incommensurate frequencies.
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3.- CONCLUSIONS AND. RECOMMENDATIONS

The core of the research activity summariztd in this final report was the development

of the dynamical localization theory and its application to a specific problem in atomic

physics. Originally motivated by a theoretical interesi in the possible survival of effects

of classical stochasticity in quantum mechanics, this research has brought into the light a

class of generic behaviours of small quantum systems subjected to periodic perturbations

such as, e.g., atoms and molecules in external fields. The excitation of such systems is

strongly limited by a coherence effect that is basically the same that is responsible for the

Anderson localization in solid state physics; by generalizing some typical concepts and

methods of the theory of Anderson localization, we were able to get a simple albeit rough

quantitative description of the excitation of atoms in microwave fields that has stood

the test of laboratory experiments. The dynamical localization theory has predicted

the quantum suppression of diffusive ionization that was first confirmed by numerical

simulations and then observed in laboratory.

Notwithstanding this undoubted success, much work has still to be done. Although

already in its present form the theory represents a statistical, non-perturbative approach

that can prove useful in a variety of time-dependent problems, more theoretical work

is needed in order to completely understand how does localization stem out of the

Schrodinger equation. Even more important, the firmly established similarity of the

dynancal localization with the better known Anderson localization opens the way to

further exciting developments.

As we have emphasized several times in this report, the predictions of our theory are

essentially statistical, as a result, the agreement with experimental data holds only "in

the average". Indeed both the numerical and the experimental data exhibit more or less

relevant deviations from the average theoietical prediction. This is hardly surprising,

because the dynamical localization theory 'vs just meant to yield a gross description of

the quantum dynamics; actually, as it was pointed out in ref3 , one would expect even

stronger fluctuations than were actually observed. Indeed, according to the theory,the
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quantum distribution is strongly fluctuating around its average exponential shape, and

these fluctuations will affect, also the ionization rate which will have a very irregular fine

structure.

Short of representing a failure of our theoretical approach, these "fluctuations" are

an essential part of the theoretical picture of localization theory and in the case of An-

derson localization their stutistical description is a major goal of the theory. They are

not due to uncontrolled changes in the environment or to any form of external noise;

they are perfectly reproducible, so that in' principle the very use of the word "fluctu-

ations" might be questioned. Though thise irregularities stem from purely quantum

coherence effects - nothing comparable is to be found in the classical ionization rates -,

it may well be the case that the seemingly irregular structures that characterize the ion-

ization curves correspond to identifiable structures in the classical phase space ( "scars"

). Nevertheless, an individual description of such local structures appears hardly feasi-

ble. Although there have been isolated successes in associating some quantum details

with classical objects such as periodic orbits or "homoclinic tangles", , this kind of

classical structures are of course individually unpredictable, as is for the time being the

mechanism why some of them find sometimes their way to "scarred" quantum states.

Therefore, from a physical standpoint, a statistical approach is recommended,

aimed at quantitatively describing how do these irregular variations of ionization rates

scale with the relevant parameters.

On more general grounds, these "fluctuations" are but one more instance of a sensi-

tive dependence of quantum reaction rates on various parameters that has been observed

in several areas, from nuclear physics to solid state. Some universal characteristics are

now emerging, that are conveniently modelled by Random Matrix Theory, and many

investigators of these different fields are now adopting as a working hypothesis that a

unified approach at such different, purely quantum "fluctuation" phenomena may be

based on the chaotic nature of the underlying classical mechanics. Insofar as future

work is concerned, we believe that just thib onf is the most promising indication of the

work we have been summarizing in this report.
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5.- FIGURE CAPTIONS

Fig.1- Probability distribution over the unperturbed levels averaged from 450 to 500

microwave periods (full curve) versus the' number of photons No for e0 = 0.03,wo =

3.5.The straight line results from a least squares fitting of the maxima of the distribution

in each photon interval. The dots give the steady state distribution obtained by iterating

the quantum map.(a) no = 100, (b)no = 200. For comparison,. the classical distribution

over unperturbed levels is also shown in (b) (dashed curve)( From ref.(3)).

Fig.2-Classical (dashed curve) and quantum (full curve) distribution functions versus

the number of absorbed photons and for the 2-dimensional model. The straight dotted

line is the one-dimensional quantum theoretical exponential distribution; the dotted-

dashed line is the analytical solution of the diffusion equation.

Fig.3-Scaled 10% threshold fields from ref.(9). The dashed line is the quantum theoret-

ical prediction according to dynamical localization theory.

Fig.4- A point by point comparison of experimental and quantum mechanical values for

the microwave field strength for 10% ionization probability, as a function of microwave

frequency. The field and frequency are scaled according to w0 = wn0, F0 = En. The

theoretical points are shown as solid triangles. The experimental points arc connected

by a dashed curve drawn through the entire data set. Values of the initial level no

and of the cutoff level R are: full circles,64/114; crosses,68/114; open circles, 71/114;

squares,80/120; triangles, 86/130; plusses,, 94/130; diamonds, 98/130. The dotted line

is the classical chaos border; the solid curve, the quantum border.

Fig.5-Example of a localized steady-state distribution over the unperturbed levels of the

three-frequencies model, averaged over 5000 iterations in the interval 950001 ti100000.

Here k = 0.38.

Fig.6. Example of a Gaussian distrbi, ,on oier the unperturbed levels in the delocalized

regime of the three-frequencies model. The distribution is averaged over 1000 iterations

in the interval 19000iti20000.
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Fig.7.- Diffusion rate D (dots) and inverse localization length 7 as functions of the cou-

pling strength k. Error bars were obtained from statistics over ten different realizations

of the random spectrum. The dotted lines result from a 3-parameters least squares fit.
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